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COMPLEX NUMBERS

COMPLEX NUMBERS

If ‘a’, ‘b’ are two real numbers, then a number of the form a + ib is called a complex number
Set of complex Numbers : The set of all complex numbers is denoted by C.
ie. C={a+ib|abeR}
Equality of Complex Numbers : Two complex numbers z, = a, +ib, and z, = a, + ib, are equal if a, = a, and
b, = b, i.e. Re (z,) = Re(z,) and Im (z,) = Im (z,)

FUNDAMENTAL OPERATIONS ON COMPLEX NUMBERS

ADDITION : Let z, =a, + ib, and z, = a, + ib, be two complex numbers. Then their sum z, + z, is defined as
the complex number (a, + a,) +i (b, + b,)

Properties of addition of complex numbers

(i)  Addition is commutative : For any two complex numbers z, and z,, we have
2,+2,=2,+12,

(if) Addition is associative : For any three complex numbers Z,, 2, 2, We have
(2,+2) +23=2,+ (7, + ;)

(iii) Existence of additive identity : The complex number 0 = 0 + i0 is the identity element for addition i.e.
z+0=z=0+zforall zecC

(iv) Existence of additive inverse : For every complex number z there exists —z such that
z+(-2)=0=(-2)+z

The complex number —z is called the additive inverse of z.

Substraction : Let z, = a, +ib, and z, = a, + ib, be two complex numbers. Then the subtraction of z, from z, is
denoted by z, — z, and is defined as the addition of z, and -z,.

Thus, z,-2,
=(a,—ay) +i(b,-h,)
Multiplication : Let z, =a, + ib, and z, = a, + ib, be two complex numbers. Then, the multiplication of z, with
z, is denoted by z,z, and is defined as the complex number.
(a,a,—b, b,) +i(ab, +ab,)

Properties of Multiplication :

(1) Multiplication is commutative. For any two complex numbers z, and z,, we have
212,527
(i) Multiplication is associative : For any three complex numbers z,, z,, z, we have
(z,2,)2;=2,(z,2,)
(ii) Existence of identity element for multiplication. The complex number 1 = 1 + i0 is the identity element for
multiplication i.e. for every complex number z, we have

z.1=z
(iv) Exitence of multiplicative inverse : Corresponding to every non-zero complex number z = a + ib there exists
a complex number z, = x + iy such that
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[2] Complex Numbers

The complex number z, is called the multiplicative inverse or reciprocal of z and is given by
;o2 i(-b)
at+b? at+b?
(v) Multiplication of complex numbers is distributive over addition of complex numbers : For any three complex
numbers z,, z,, z, we have

172" =3
() z(z,+2,)=122,+2.2, (Leftdistributivity)
(i) (z,+2,)z,=2,2,+2,2, (Right distributivity)

Division : The division of a complex number z, by a non-zero complex number z, is defined as the multiplication

z
of z, by the multiplicative inverse of z, and is denoted by i

L7727 1
Thus, . 142 -

2 2
Conjugate : Letz =a + ib be a complex number. Then the conjugate of z is denoted by 7 and is equal to a — ib.

Thus, z=a+ib=>Z=a-ib

Properties of Conjugate :

If z, z,,2,are complex numbers, then
() z+Z=2Re(2)

(i) z-z=21Im(2)

(i) z=Z <z ispurely real

(iv) z+Z=0=2z ispurely imaginary.

v) 2z ={Re(@¥ +{(IMD)¥

i) z,+z,=2,+z2,

(i) z,-z,=2,-2,

0 2,2,=2,7,
(X) [;jzé,zzio
xi) (2)=2

MODULUS OF A COMPLEX NUMBER

Definition : the modulus of a complex number z = a + i b is denoted by |z| and is defined as

12| = Va? +b? = \{Re()¥ +{Im(2)¥*

° The multiplicative inverse of a non-zero complex number z is same as its reciprocal and is given by

Re(2) , . (-Im@) _ 7
|z |z |z
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If b is positive

then ~~Ja+ib= J_{\/%{\/az +b* + a} + i\/%{\/a2 +b? - a}}

If b is negative then

Ja+ib= iN%ﬂ z|+Re(2)} - i\/%ﬂ Z| —Re(z)}}

Argument or (amplitude) of a Complex Number

(i) If x andy both are positive, then the argument of z = x + iy is the acute angle given by tan B %‘

(i) x<O0andy> 0, thenthe argument of z= x + iy is 7 — ¢, where ¢ is the acute angle given by tan™ |y/x|.

X

(iii) I1fx <0andy <0 then the argment of z=x + iy is ¢ — 7 Where ¢ is the acute angle given by tana =

(iv If x> 0andy <0, then the argument of z = x + iy is —a where ¢ s the acute angle given by tana = »

Polar or Trigonometrical Form of a Complex Number

Let z = x + iy be a complex number represented by a point P (x, y) in the Argand plane. Then, by the geometrical
representation of z = x + iy, we have

= z=r(cosd+isin),wherer =|z| and 0 =arg(z)
This form of z is called a polar form of z.

EULERIAN FORM OF A COMPLEX NUMBER

e —cos@+ising and e’ =cos@—ising
Properties of Argument of z

(i) arg(z)=-arg(2)

(i) arg (z,z,)=arg(z,) +arg(z,)

(i) arg (z,z,) =arg(z,) —arg(z,)

(iv) arg(z,/z,)=arg (z,)—arg(z,)

(v) arg(Z")=nargz.

) |z,+z,|=|z,-z,|= argz,—argz, =n/2
i) |z,+z,=z,|+|z,|= argz, =argz,

(viii) If arg z = 0, then z is purely real

(ix) Ifargz==+ n/2 thenzis purely imaginary
Properties of Modulus of z

(i) |21 +z, |2=| Z, |2 +| Z, |2 +2| Z, ” Z, |COS(01 _02)-
or

|Zl+zz |2=|21 |2 +|Zz |2 +2Re (2172)



[4] Complex Numbers

(i) |z,-z,=|z,F +z, -2|z]||z,|cos(6, - 6,)
or
|Zl -7, |2=|21 |2 +| Z, |2 - 2Re(2172)
(iii) |Zl+22 |2 +|Zl_22 |2=2(|21|2+|Zz |2)
. T
(iv) |z, +2,|=|z,~2,|=arg (z,) —arg (z,) ZE

V) | 2,+7,| =lz,|+|z,| & arg(z,) =arg(z,)
z
2 2 2
(vi) 1242, 1=z +12, = % is purely imaginary.
2

i) |z,+z,|< |z,]+]|z,]
(viii) |z, -z,| < |z, |+]z, |
(ix) |z,+z,| > |z,]|-]z,]
(x) |21_22| 2 ||21|_|Zz ||
xi) 1z, z,1=12,112,|
0di) |2 [=|z
(xiii) |z =zZ
xiv) |z|=ZH-z|=|-Z]
Distance Between Two Points : If z, and z, are the affixes of points P and Q respectively in the argand plane, then
PQHz,-z|

Section Formula : Let z, and z, be the affixes of two points P and Q respectively in the argand plane. Then, the affix
of a point R dividing PQ internally in the ratiom : n'is

mz, +nz

1 . . . . . Mz, —nz,
. but if R is external point, then affix of R is ————

Mid Point Formula :

. . . .1, +7,
If R be the mid-point then affix of R is T

o |If z,,2, 2, are affixes of the vertices of a triangle, then the affix of its centroid is
2,+2,+12,
3
e The equation of the perpendicular bisector of the line segment joining points having affixes z, and z, is
2(Z,-7,)+7(z,-2,) =z, |2 -z, |2
e Theequation of a circle whose centre is at point having affix z, and radius R is
12-2,|=R
Note : o If the centre of the circle is at the origin and radius R, then its equation is | z | = R.
e General Equation of circle is
zZ+az+az+b=0 where pec R and a is complex number

represents a circle having centre at “-a’

and radius = \/|a* -b =+aa—b
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COMPLEX NUMBER AS A ROTATING ARROW IN THE ARGAND PLANE

To obtain the point representing ze' we rotate. 85 through angle ¢ inanticlock wise sense. Thus, multiplication

by ei# to z rotates the vector SE in anticlockwise sense through an angle ¢ .

Let z, and z, be two complex numbers represented by points P and Q in the argand plane such that ZPOQ = 6.

. uuu Z eig uuu
Then, z,e' is a vector of magnitude |z,| = OP along OQ and |1z | is a unit vector along OQ .
1
1 |2,]
Lyl _ o
Z,= €
2z
Q (z)
P (z)
2 X
X 0
y/
SOME IMPORTANT RESULTS
. If Z,,2, 2;are the affixes of the points A, B and C in the Argand plane, then A(z)

0) /BAC =arg [ﬂJ
-4

B(z) C(2)

z,-2, |z2,-2 .
(i) <BAC=arg— 1% 1|(C0$a+|$lna), wherea = /BAC.
Z,=4 |Zz_21|

Ifz,, z,, z, and z, are the affixes of the points A, B, C and D respectively in the Argand plane. Then AB is
inclined to CD at the angle.

ar
g z,-12,
(i) The equation of the circle having z, and z, as the end points of a diameter is

(Z_Zl)(f_fz) + (7_71)(2_22) =0

DE-MOIVERE’'S THEOREM

STATEMENT :
(i) If nez (the set of integers), then

(cos@+isind)" =cosn@+isinnd
(i) If neQ (the set of rational numbers), then cosn@ +isinng is one of the values of (cos@+ising)".

1 .
iy ———————=co0s0—isin6
(i) cosO+isin®

(iv) (cos6, +isin®,)(cos0, +isin®,) =cos(0, +6,)+isin (6, +6,)
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Complex Numbers

n" ROOTS OF UNITY

nth roots of unity are : ¢° =1, a,a?,&°,

PROPERTIES OF n"™ ROOTS OF UNITY

...... a"t where g =¢e'?"'" =cos2z/n+isin2z/n

i2z/n

Property 1 : nth roots of unity form a G..P. with common ratio e
Property 2 : Sum of the nth rots of unity is always zero.
Property 3 : Sum of pth powers of nth roots of unity is zero, if p is not a multiple of n.
Property 4 : Sum of pth powers of nth roots of unity is n, if p is a multiple of n.
Property 5 : Product of nth roots of unity is (-1)™*
Property 6 : nth roots of unity lie on the unit circle |z| = 1 and divide its circumference into n equal parts.
* PROPERTIES OF CUBE ROOTS OF UNITY AND SOME USEFUL RESULTS RELATED
TO THEM
@ Cube roots of unity are 1, », »* Where
_ 1B e 1B
20 2 2 2
(i) arg(w)=2x1/3 and
(iii) Cube roots of -1 are -1, —@,—-@°
V)  lre+e’=0
v) o’ =1

*  Four fourth roots of unity are -1, 1, —i, i

* Jog (o+ip) :%Iog(oc2 +B%) +itan”

3
a

*  Condition for points A(z,), B(z,), C(z,), D(z,) to be concyclic :

oa=p
D(z.) C(2)
= arg [—22 — % J =arg [—ZZ — Z3j 6) B
z,-2, z,-1,
2,-2, 2,-1
= arg| =—x—+—21=0
g[ 2,-2, 1, —ZJ Az, B(z,)

= [gz :224))((221 :?;J is purely real.

Condition (s) for four points A(z,),B(z,),C(z,) and D(z,) to represent vertices of a

(1) Parallelogram :

(i) The diagonards AC and BD must bisect each other

1 1
= E(Zl +2;) ZE(ZZ +2,)

D(z)

C(z,)

A(z,

()



Complex Numbers

[7]

<7,+2,=2,+12,
(i) Rhombus :
(a) The diagonads AC and BD bisect each other.

< 7,+2,=2,+1,

and (b) a pair of two adjacent sides are equal i.e. AD = AB.

<:>|Z4_21|=|Zz_21|
(iif) Square :
(a) The diagonals AC and BD bisects each other
S 2,+2,=2,+2,
(b) a pair of adjacent sides are equal
AD = AB
<:>|Z4_21|=|22_21|
(c) The two diagonards are equal
AC = BD <l|z,-2]=2,-2,]
(iv) Rectangle :
(a) The diagonals AC and BD bisect each other
2,+2,=2,-12,
(b) The diagonalds AC and BD are equal
C>|23+21| =|Z4_Zzl
(v) Incentre: 1 (z) of the AABC is given by
, 8zt bz, +cz,
a+b+c
(vi) Circumcentre (z) of the AABC is given by
- z,(sin2A) +z,(sin 2B) + z,(sin 2C)
N sin2A +sin 2B +sin 2C
(v) Orthocentre (z) of the AABC is given by

- (asecA)z (bsecB)z, + (c secC) z,
asecA +bsecB+csecC

(vi) Area of triangle ABC with vertices A(z,), B(z,), C(z,) is given by

Zl 71
1
A== modulus of |z, Z,
4
Z, Z

w

(vi) Equation of line passing through A(z,) and B(z,) is
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(vii) General equation of a line is
az+az+b=0, wherea is a complex number and b is a real number.
(viii) Complex slope of a line joining points A(z,) and B(z,) is

z,-2

. W= 2
given by 7,37,

(ix) Two lines with complex slopes w, and w, are parallel if w, =w, and perpendicular if w, + w, =w

Length of perpendicular from a point to a line

Length of perpendicular of a point A(® ) fromthe line az+az+b=0

_|am+am+Db|
2]a|

Recongnizing some loci by Inspection :

(i) If z, and z, are two fixed points, then
|z-z,|<|z-z,| represent perpendicular bisector of the line segment joining A(z,) andB(z,).

|Z_21|

(i) If z and z, are two fixed points and k >0, k =1 is a real number then 12-2, | =k represents a circle. For
2

k = 1 it represents perpendicular bisector of the segment joining A(z,) and B(z,)
(i) Letz, and z, be two fixed points and k be a positive real number.
(@) Ifk>z,~z,|then|z-z |+|z-z,|=k represents an ellipse with foci at A(z,) and B(z,) and length
of major axis = k = CD.
(b) Ifk=|z, -z, represents the line segment joining z, and z,.
() Ifk<|z,-z)then |z-z |+|z-z,|]=k does not represent any curve in the argand plane.
(iv) Letz, and z, be two fixed points, k be a positive real number.
(@ If k<|z, -2z, then |z—z |-|z-z,|=k represents a hyperbola with foci at A(z,) and B(z,).
(b) If k=(z,-2,), then
(z-2)-(z-2,)=Kk
represents the straight line joining A(z,) and B(z,) excluding the segment AB.

(v) Ifz, and z, are two fixed points, then |z — z,/* + |z - z,]° = |z, - z,|* represents a circle with z, and z, as
extremities of a diameter.

(vi) Let z, and z, be two fixed points and o be a real number such that 0 < o < then (a) If 0< o < x and

z-1,

o ;tg then arg [ j= & represents a segment of the circle passing through A(z,) and B(z,))

z-1,

)
(o)

A(z) B(z,)
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z-2 T
(b) If a,=m/2, then arg [z——zlJ = 0‘=§ represents a circle with diameter as the segment joining
2
A(z,) and B(z,).

-7

(c) if a=r thenarg ( L j = o represents the straight line joining A(z,) and B(z,) but excluding

2

the segment AB.

Aiz) B(@)

z-1,
(d) If =0, thenarg 77

j—oc(z 0)

2

| |
A) B(z)
represents the segment joining A(z,) and B(z,)
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